Diketahui vektor A = 3i + 4j + √75k dan B = 3i + 4j + 0k. Besar sudut apit antara A • B adalah
Diketahui vektor A = 3i + 4j + √75k dan B = 3i + 4j + 0k. Besar sudut apit antara A • B adalah ….
A. 0°
B. 30°
C. 60°
D. 90°
E. 120°
Pembahasan:
Diketahui:
A = 3i + 4j + √75k
B = 3i + 4j + 0k
Ditanya:
θ = …. ?
Dijawab:
Kita bisa lakukan perhitungan seperti berikut:
|A| = √(3² + 4² + (√75)²) = √100 = 10
|B| = √(3² + 4² + 0²) = √25 = 5
Sehingga
A • B = |A| |B| cos θ
(3i + 4j + √75k) • (3i + 4j + 0k) = (10) (5) cos θ
3 . 3 + 4 . 4 + √75 . 0 = 50 cos θ
9 + 16 + 0 = 50 cos θ
cos θ = 25/50
cos θ = ½ = cos 60°
θ = 60°
Jadi besar sudut apit antara A • B adalah 60°.
Jawaban: C
----------------#----------------
Semoga Bermanfaat
Jangan lupa komentar & sarannya
Email: nanangnurulhidayat@gmail.com
Kunjungi terus: masdayat.net OK! 😁
Post a Comment for "Diketahui vektor A = 3i + 4j + √75k dan B = 3i + 4j + 0k. Besar sudut apit antara A • B adalah"